Investor Sentiments and Trading Volume’s Asymmetric Response: a Non-linear ARDL Approach Tested in PSX

  • Irum Saba Assistant Professor, IBA Karachi, Pakistan.
  • Maria Shams Khakwani Lecturer, Institute of Management Sciences, The Women University, Multan, Pakistan.
  • Rehana Kouser Professor, Department of Commerce, Bahauddin Zakariya University, Multan, Pakistan.
  • Abdul Wahab MPhil Scholar, Department of Commerce, Bahauddin Zakariya University, Multan, Pakistan.
Keywords: Investor Sentiments, ARDL, PSX, Asymmetric, NARDL

Abstract

The research paper entitled “Investor sentiments and trading volume’s asymmetric response: A non linear ARDL approach tested in PSX” is an attempt to investigate the dynamic linkages between trading volume and investor sentiments for Pakistan Stock Exchange (PSX) 100 index. Two sentiments indicators have been used to enlighten the linkages. These indicators are overconfidence and net optimism and pessimism. Trading volume has been used as a proxy for the measurement of market liquidity. Non-Linear Asymmetric Autoregressive Distributed Lag (NARDL) as well as Dynamic Conditional Correlation (DCC) GARCH have been used to explain the dynamic linkages between trading volume and investor sentiments. Empirical findings suggested an asymmetric long-term market liquidity reaction to investor sentiment as well as upcoming three-year correlation have been forecasted between the trading volume and investor sentiments. In the short term, stock market liquidity reacts rapidly and asymmetrically to changes in overconfidence sentiment while the net optimism and pessimism sentiment have insignificant short-term impact on trading volume.

Downloads

Download data is not yet available.

Article Analytics Summary

References

Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of financial economics, 49(3), 307-343. DOI: https://doi.org/10.1016/S0304-405X(98)00027-0

Black, F. (1986). Noise. The journal of finance, 41(3), 528-543. DOI: https://doi.org/10.1111/j.1540-6261.1986.tb04513.x

Bollerslev, T. (1990). Modlling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The review of economics and statistics, 498-505. DOI: https://doi.org/10.2307/2109358

Chiu, T. L., & Goldstein, R. A. (1998). Optimizing potentials for the inverse protein folding problem. Protein engineering, 11(9), 749-752. DOI: https://doi.org/10.1093/protein/11.9.749

Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature protocols, 4(8), 1184. DOI: https://doi.org/10.1038/nprot.2009.97

Engle, R. F. (2000). Financial econometrics–a new discipline with new methods. DOI: https://doi.org/10.1016/S0304-4076(00)00053-1

Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance1. Journal of financial economics, 49(3), 283-306. DOI: https://doi.org/10.1016/S0304-405X(98)00026-9

Grossman, S. J., & Miller, M. H. (1988). Liquidity and market structure. The journal of finance, 43(3), 617-633. DOI: https://doi.org/10.1111/j.1540-6261.1988.tb04594.x

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of computational chemistry, 29(11), 1859-1865. DOI: https://doi.org/10.1002/jcc.20945

Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91. DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Michael, P., Patrick, B., & Ulric, N. (1993). Cognitive Psychology. The American Journal of Psychology, 105, 621-673. DOI: https://doi.org/10.2307/1422917

Odean, T. (1999). Do investors trade too much? American economic review, 89(5), 1279-1298. DOI: https://doi.org/10.1257/aer.89.5.1279

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. DOI: https://doi.org/10.1002/jae.616

Prast, H. M. (2004). Investor psychology: A behavioural explanation of six finance puzzles: De Nederlandsche Bank Amsterdam.

Shefrin, H., & Statman, M. (2000). Behavioral portfolio theory. Journal of financial and quantitative analysis, 35(2), 127-151. DOI: https://doi.org/10.2307/2676187

Shleifer, A., DeLong, J. B., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703-738. DOI: https://doi.org/10.1086/261703

Statman, M. (1999). Behaviorial finance: Past battles and future engagements. Financial Analysts Journal, 18-27. DOI: https://doi.org/10.2469/faj.v55.n6.2311

Thaler, R. H. (2005). Advances in behavioral finance (Vol. 2): Princeton University Press. DOI: https://doi.org/10.1515/9781400829125

Published
2019-06-30
How to Cite
Irum Saba, Maria Shams Khakwani, Rehana Kouser, & Abdul Wahab. (2019). Investor Sentiments and Trading Volume’s Asymmetric Response: a Non-linear ARDL Approach Tested in PSX. Journal of Accounting and Finance in Emerging Economies, 5(1), 47-56. https://doi.org/10.26710/jafee.v5i1.720